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Toward a Persistent Object Base

John R. Nestor

ABSTRACT To better understand the needs of future programming environments, two current
technologies that support persistent data In programming environments are considered: file sys-
tems and data base systems. This paper presents a set of weaknesses present in these current
technologies. These weaknesses can be viewed as a checklist of issues 1o be considered when
evaluating or designing programming environments.

I Introduction

-- Every programming environment must support not only transient data that Is used during com-
putation but also support persistent data that is kept over some period of time. Two widely used
current technologies support persistent data: file systems and database systems. There is In-
creasing recognition that neither of these technologies alone will provide an adequate basis for
the next generation of programming environments. Most new environment efforts are moving
toward a more object oriented approba a synthesis of ideas from file systems and
databases. exa les are CAISJ 4 . t h e 1 ESPRIT Portable Common Tool Environ-
ment-j3iq lF- , the Common Usp Frameworlf[CLF 051, Ind Arcadia [Taylor 86D. This next
genr ation ofe chlq o will be referred to as persistent object bases. "

------------- -----

To better understand the nature of the technology needed by future programming environments,
this paper considers the weaknesses that win have to be eliminated in traditional file systems and
database systems to create a first class persistent object base. Section 2 sets the context for
later sections by discussing the character and needs of future programming environments. Sec-
tions 3 and 4 cover, respectively, the weaknesses of traditional file systems and database tech-
nologies. Secton 5 presents concsions.

K. / , i

2 Context
Modem software technologies allow software engineers to automate many of the processes that
are often Implemented by inefficient manual or semi-automatic procedures. Such Improvements
Increase our expectations, leading to larger software projects. Larger projects, In tum, require
Improved communications among managers, users, designers, and maintainers of such projects.

As the software to be produced grows in size and compiexlty and the communication require- Jb

ments Increase In sope, the tools required to develop and support such software must become
more powerful, and the computational system to support the software tools must grow propr-
tionately In scope. In place of a single batch or time sharing machine, Increasing emphasis Is
being placed on use of workstations, distributed computation, and networks to Integrate

"" - , ", - , " . . ,- ,"- .-



previously separate computer systems Into a single vast communication and computational sys-
tem. Not only must the hardware evolve, but the environment Itself must be developed,
upgraded, and enhanced over a lifetime of many years.

Programing environments have become a focal point for much of the work directed toward
Improving the practice of software engineering. Such environments provide support for software
development, management, and maintenance. There are some primitive programming environ-
ments already available; there are many next generation environments currently being designed;
and work on environments will be a major technical thrust of software engineering for many years
to come. There am two top level design goals that will make future environments successful:
openness and Integration.

Openness refers to the ability to Incorporate tools, methodologies, and technologies into the
environment as needs and opportunities arise. For an environment to be open, it must provide a
set of interfaces that permit new features and tools to be easily Inserted. The degree to which an
environment can be extended to support a wide variety of new tools and methodologies Is one
measure of the degree to which that environment can be considered to be open. Openness can
also be enhanced by the way in which the Interfaces are made available; public availability (as
opposed to proprietary control), quality documentation, ease of use, acceptable performance,
stability, portability, and standardization can all contribute to the openness, In actual practice, of
an environment.

Integration means that the components of the environment work together through a uniform
Interface, style of operation, and communication medium. The cooperation of the components
allows for better use of Information sharing, resulting in an intelligent environment.

Though openness and Integration are Important to software development environments, most
systems to date have emphasized openness over Integration, or vice versa: There are few exist-
ing examples of systems that achieve both. Nevertheless, this tension can be resolved In a way
that will enable both goals to be achieved; the key Nes largely In the design of the Infrastructure of
the environment, the kernel parts on which all other tools, features, and methodology support are

built. If the infrastructure is not properiy designed, increasing complexity of our environments and
the systems they are used to construct will make quality Increasingly difficult to achieve.

In earlier systems, the Infrastructure was provided mainly by the operating system, In which the

primary concern was resource allocation and scheduling. As a result of improved hardware .1
technology, new software engineering tools, evolving views of the software development process,
and ever increasing expectations, a shift of emphasis has occurred in our view of the role of the

Infrastructure.

Persistent object bases are a key part of the Infrastructure of future programming environments.
Providing a high-quality persistent object base Is a necessary, although not sufficient, condition

for achieving the full potential of future programming environments.
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3 Weaknesses of Traditional File Systems

This section considers five areas where traditional file systems are Inadequate for persistent
object bases: organization, abstraction, history, attributes, and synchronization. Unix' [Ritchie
741 is used here as an example of a traditional file system. Other traditional file systems differ In
their details from the Unix file system but display essentially similar weaknesses.

3.1 Organization

The Unix file system is organized as a tree of files, each of which is either a directory or an
ordinary file.2 Within the tree, directories appear as Inner nodes and files appear as leaf nodes.
The root of the tree Is a unique directory from which all directories and files can be reached.
Each directory Is a mapping between file names and the files themselves. Each file has a unique
path name given by the path from the root directory to the file. For example, the path name
/usr/bin/man is for a file named man that Is reached from the root directory via first the uar
directory, then via the bin directory.

One problem with a tree structured file system is that the user is forced to represent a system in a
way that does not reflect the structure of the data In the system. A related problem is that as a
system evolves the user periodically must do major reorganizations of the data within the file
system. These reorganizations are needed because the preexisting hierarchical structure in-
creasingly deviates from the actual logical relationships.

Consider, for example, a system being built as part of some project called 0_Development. A
directory Is built for the project.

/]pr:Oj:ect /Q.veo:mt

Initially, all files for the project are placed In that directory. Soon the number of files in that
directory has grown to where more structure Is needed. Suppose that both documentation files
and program files exist. To provide more structure, two new directories are created.

/project/ Peveloprnt/doc mntation
/projects/QDevelopuent/pogram

All of the files are moved Into one or the other of these two directories. Not only is there the extra
work Involved In moving the files Into the two new subdirectories, but any shell scripts that
referred to kp.veeopmnt must now be changed to refer to one or the other or both of the two
new subdirectorles. For a persistent object base, no moves should be required and existing shell
scripts should remain unchanged. Additional information would be added on top of the existing

structure.

'Unix is a V caden s of AT&T.

Im w dw specia Nos and liks fht t r mpgly we nM downedl two.
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Consider next that itis time to release the 0 system to users. Users should have the 0 ex-
ecutable file and the 0 user manual. but not the 0 source code or the 0 Internal documentation.
These files are a subset of the files In the two subdirectories. Since users should not have to
know about the substructure of the 0 project directories and be confused by al those other files
that don't matter to them, a now directory is created to hold copies of the files that the users will
need.$

ze].eaie/Q

Moving files was bad enough, but In this case there are actually two copies of the same files.4 For
a persistent object base, information would be added, but files would not be moved or copied.

Finally, consider that It Is time to produce a new version of the 0 system while leaving the
previous version of 0 around. To do this, the directories must be split.

Ipcoj ct&/Q Developmnt/docimentation/V1
/pzojects/Q.Deve*opmnt/doc~mntatL4n/V2
/poject/Q_evelopmnt/pzogzaa/vI
/pzojectu/Q pvelqnt/prograa/v2
/z' ease/Q/VL
/zel ase/Q/V2

Here all the old files are moved Into the vi directories. The V2 directories will be used for the
new version of the system. A simple way to do this is to start by copying all the vi files Into v2.
Work on the new version then can be done by changing the v2 file while leaving the vi files
Intact.5 Furthermore, when versions were Introduced, why wasn't the directory tree split In one of
the following ways?

/project/_pevelopm t/vl docrantaton
/project/Qpevelopamt/vi/prog ra
/projects/Q Dvelopmnt/W/documantaton
/projoct /QDevelopmnt/W/p sraa
/heeiaeQ/V3.
/ei1a/Q/V2

/Vi/pzojectu/QDveopmant/docuvatatLon
/Vi/projefte/QDevelopent/program

/ireaase/Q
/V2/pojectu/QD.ev.iopmnt/doimantat ion
/V2/proJcts/ .evelopment/proran

/2/leaseIQ

'At Mest in some Me systms symbn NABs could be used to evold tie copy. In unix. however. hard ks can only be
mede %ie en a drhecmy aide tie sne physalm O volume. Symbolk *f con am volumes but resuft i an
meymmeel1d llosln- M casymlmeowika siatlon.

lAwd known -aft - sigieewlg eWWestiatwhen tier ow two -enc copiesciftesame Us athlest one a
tiwm is dibrment

Slan ft systms pode a sarn bt moeatm witew t YP2reclod a m iniWAlLy empty er a search st is Gt
tII cliulrs l tlhi2VWV. Anylameaf not mustbehwiigeditis lktcopedint v2. Thisisegain sWof a
oinbM Isb blios. conro . nd emr prome.
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The answer is that that there is no strong reason to prefer one of these structures over the others.
In a persistent object base, al three of these forms should be Indistinguishable.

3.2 Abstlton

Unix starts with the assumption that all fies exist on the same physical volume (typically a disk).
In order to deal with multiple physical volumes, Unix has a mount command. The mount com-
mand has two arguments: an existing directory and a new volume that Itself holds a file system
consisting of a tree of directories and ordinary files. A mount causes the file tree on the new
volume to be "pasted" into the file tree in piace of the specified existing directory. The net effect
is th there is a strong oOUpLing between the path name of fie and its physical location. As
Unix has come to be used in distributed networks, several network flie systems have been
proposed, Including Apollo DOMAIN (Leach 83], Sun NFS [Sandberg 851, and AT&T RFS [Hatch
853. In all of these systems, the path name Is coupled to the physical placement within the

work.

Modem data abstraction [Shaw 841 shows that considerable benefits can be achieved by separat-
Ing the logical structure of data from its representation. As can be seen above, the Unix file
system blurs together the logical concept of path name with the representational concept of
physical location. Representational properties frequently Influence the logical structure of data.
Since physical volumes have a finie maximum data size, the number of files within the subtree
for a volume Is constrained. When the data size exceeds the physical space, the user is forced
into modifying the logical structure. In networks, data on a local disk is often faster to access than
data on a remote node. By changing the physical placement of data within the network, and
therefore its logical structure, a user can get faster file access. In both these cases, the user who
wants to deal with the logical structure of the data frequently spends considerable time also
dealing with the physical constraints of the file system.

The Unix file system does not support flexible physical representations. For example, there is no
way in Unix to transparently store a file in a compressed format using text compression [Welch
84] or as a data relative to some related file [Rochkind 75, Katz 84]. This kind of transparency
would eliminate the user burden of explicitly invoking a decompressing program before each use
of the compresed file.

Another kind of flexible representation Is the use of multiple cached copies of the same file
[Schroeder 851. Within Unix, caching can be provided only by modifying the Unix kernel.

In a persistent obed base, data abstraction should be practiced so that logical concepts are
decoupled from physical representations; richer representations should be possible by providing
the ability to program the Implementation of file abstractions. The Apollo extensible streams
mechanism [Apollo 861 Is an example of such a data abstraction mechanism grafted on top of a
Unix file system.

5 4



3.3 HIstory

Two related history concepts are considered here: source versions and re-creation.

Every time a source file is edited, logicafly a new version Is created, so that over time a flnear
sequence of versions Is created. When alternatives occur, such as when a bug is fixed in an old
release while work continues on the next release, the sequence can fork, and when alternatives
come together separate sequences can join. Abstractly, a directed acyclic version graph is
formed. Not all points in the version graph are equally Important; In practice, users impose
additional structure at one or more levels of granularity and do not preserve versions below some
minimum level of granularity. The finest granularity corresponds to every edit. A coarse
granularity would be at major release points. Intermediate granularities are frequently defined to
aid the management of a development project. The concept of versions can be usefully extended
to multiple related source files which may be considered to be progressing In parallel along a
version graph.

One common way of handling source versions Is through the use of naming conventions: either at
the directory or the file level. Earlier in this paper, directory naming conventions were used as a
way of representing versions of related sets of files. For example, the two directories below
would hold all the 0 system source files associated with each of the two versions.

pro jects/Q_.ve1epo*nt/V
proJects/QPeve1opmnt/V2

A method for dealing with Individual source files Is use of a generation mechanism. Although
Unix provides no special generation mechanism, the same effect can be realized by file naming
conventions. For example, two versions of the same file could be named using a version exten-
sion.

/projects/qDevelopmnt/QControl. ada. J.
/project./QDevelopmnt/qControl. ada .V2

One disadvantage of this approach is that all shell scripts need to be aware of the generation
naming conventions, and any vi shell script needs to be edited before t can be used for v2.6
When using conventions for representing version relationships, the entire burden for ensuring
consistency rests with the user. Although a convention for representing linear version relation-
ships Is obvious, conventions representing forks and joins in the version graph are less clear.

A more sophisticated source version system Is provided by the Unix SCCS tool and by a similar
but Improved tool RCS [Tichy 82]. SCCS keeps track of all the versions of a single source file. it
provides support for both forks and joins! The SCCS Implementation holds all versions of a
source file In a single file called the s-file. Before any use of a particular version of that source
can occur, it must be extracted explicitly from the s-file. Typically, shell scripts will contain calls to

*The edit could be avoided by passing the vrsion as a sring parene which Is fIen oncafnated ID al Me nanes.

?The SCCS dmmenWon suggesto that oft be kept t a minimum lo avoid svcuai cmv8xy.%IF _ II



SCCS for this purpose. The big disadvantage of SCCS is that it Is an ad hoc data encoding
scheme Implemented on top of the file system, rather than as part of if. In addition to its logical
properties, SCCS also uses the representational method of source deltas to encode the versions.
This Is yet another example of how logical properties and physical representation have been
blurred together.

In a persistent object base. SCCS functionality would be provided In a transparently Integrated
manner. Versions and data compression would be handled by orthogonal mechanisms.$ The
OSEE system [Leblang 85] is one current example of how this could be done.

Re-creation is the abiliy to be able to go back to an old version of a system and repeat all of the
steps that were Involved In its creation. Re-creation Implies that all Information about system
creation Is captured. Traditionally, a lot of the system creation Information was held only In the
heads of the development team, making re-creation difficult. Re-creation is important for two
major reasons. Fist, I a system Is re-creatable, important structural relationships between the
files of the system are captured. System maintalners can use the relationships directly and use
support tools that depend upon having the relationships available. Second, if an old version of a
system has a bug, re-creation means that a minor variation of it can be constructed in which the
bug is fixed. To better understand re-creation, the concept of a derivation graph is used. Deriva-
tion graphs were used in Toolpack [Osterweil 83]. The definition used here Is a somewhat
s~npfiled form of the model presented In [Borson 86].

Those files that make up a system can be divided into primitive and derived files. A primitive file
Is either a source file of the system or some file from outside the system that Is used in its
construction. A derivation step consists of an Invocation that accesses a set of Input files to
produce a set of output files. The Invocation includes a tool consisting of an "executable* file and
a set of actual parameters to that tool, which could be either constants or files (or their names). it
is assumed that the output tiles depend only upon the Input tiles and the Invocation Involved in
the derivation step.9 Derived files are those that are output of some derivation step. The Inputs of
a derivation step and the file holding the tool being run In the derivation step must be either
primitive files or output files of some earlier derivation step. The combination of all the derivation
steps for a system is its directed acyclic derivation graph. A system Is re-creatable if all of its
derived files can be re-created Identically. In terms of a derivation graph, re-creation Is possible if
each derivation step Is known, the set of primitive files Is known, and the primitive files have not
been changed since the system was first created.

In Unix. creation is often accomplished using the Unix tool Make [Feldman 79. Make applies a
set of heuristics to a makefile that contains a lst of explicit commands to determine and run a set

OVr m uion, oweemr, W ould be umd W gudb h t Wm* asnly eimlse r ds =omrW.

*en p ., it i nm.y to d*d with #np Uo mp at tee to systm dock or SiaW c idi Ot ue. For
-x e pp sunawe gnor-- .
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of invocations.r ° Make is concerned with Invocations, not with the more general concept of
derivation steps. In general, t is not possible to tell the complete set of input files and output files
of each derivation step of a system by looking only at the makefle; therefore, t Is not possible to
determine the set of primitive flies of a system. By convention, users normally Include Information
about these file sets in their makefiles, but there Is no check to be sure that this Information is
complete or even correct. The reason for this deficiency goes deeper than just the Make tool. In
Unix, when a tool Is invoked, there is no way to tell what files are opened for Input and/or output.
Such an Inquiry Is essential to guarantee re-creation but when arbitrary tools can be Invoked
during derivation 1 , this Inquiry can only be Implemented by making modifications to the Unix
kernel.

For re-creation, the set of primitive files must be determined, and each file in the set must be
checked to ensure that t has not been changed since Initial creation. Unix provides some assis-
tance here in the form of a time stamp for each file that gives the time that each file was last
modified. As long as the last modified time on a file Is older than the creation time of the system,
then it would seem that t Is a correct file. The problem occurs when the Unix move command,
nw, Is used. This command moves a file between two directories and preserves its last modified
time. So when mv Is used, the primitive file may not be correct and re-creation can not be
done.1 2 Worse, there Is a system call, utimes, that can be used to change arbitrarily the last
modified time.13

The use of SCCS protects the user from changing old versions of a source file. This is a step
forward, although the problem Is still present at a deeper level because the s-file itself is subject
to all the previous problems.

In a persistent object base, re-creation would be achieved by Immutable objects and unique
object identifiers, such as those provided by the Cedar System Modeller [Lampson 83). All primi-
tive files Rnd the full derivation graph would be stored as Immutable objects whose content can-

*" not be changed by any user. Each object Is assigned a unique identifier at creation In a way such
*that no two objects ever will have the same unique identifier. The derivation graph would refer to

primitive objects by their unique Identifier, not by their file name; so move and copy operations
would not confuse the identification of the primitive objects.

Keeping the information needed to re-create all the old versions of all systems on rotating mag-
netic media Is generally considered too expensive. Write-once laser disks are just starting to

0ANihough not discussed here. Make also use heulilcs to avoid rnning tmo derivation a"p whose inputs have
not dhiged since tey weni run lat.

"Tools whew seo of input md output les for an inv eon mn be delpned esaly prew no probin. The C
compiler, which c mi read mtry incide lies involves moderate diffculy.

12
1. p rk. It ohm lbaks as though re-mcreon happens orecly. Usem requently spend many confusing hours

when the recreated sysrn Is subtly diffM from ihe original sysn.

O 1 5 T designers how been Imeen o use this ad conatrucively to Oim Make into doing "Vi right 1hing*.
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become available [FuJiani 84: They offer the ability to hold extensive historical Information at
acceptable costs. When write-once laser disks are combined with the use of compressed
representations, there is no reason why aN past versions of all source files cannot be kept avail-
able on-ne [Katz 84.

3A4 Aftdrbute

Unix pmvides a fixed set of attributes for each file as part of its directory entry. These attributes
Include the name of the owner of the file, a set of file protection control bits, and times of file
creation, modification and use. These attributes are mostly set and used by the system, although
there are commands and system calls that permit the user to set and use them.

When additional attributes beyond those provided by Unix are needed, the user must find after-
native ways of representing them, since there Is no way to add new attributes to a directory. The
set of additional attributes that could be of use in an environment Is unlimited, being determined
by the needs of a development effort and the tools it uses. A persistent object base must be able
to support arbitrary attributes. Some examples of additional attributes Include the unique Iden-
tiler for the file, a string attribute that gives the reason why the file was created, and a boolean
attribute that Indicates whether the content of the file has been compressed.

Attributes can be used also to relate files. For example, the version graph can be represented by
each file having as an attribute a set of the unique Identifiers o1 the files that are its immediate
version predecessors. Since the version graph Is symmetrical, another attribute that Is a set of
version successors could be added also, but these two attributes contain redundant information.
To avoid the redundancy and to preserve the symmetry, a better way of representing the version
graph would be with a version relationship that relates predecessors with successors but that Is
not an attribute of either. So In addition to attributes, a persistent object base should support
arbitrary relationships. Other examples of relationships Include the derivation graph, and a
relationship between C program files and the Include files they reference.

In addition to files having attributes, a persistent object base should also permit relationships to
have attributes. 14 For example, the version relationship could have an attribute that says why a
successor version was produced from some predecessor version, and a derivation step within the
derivation relationship might have an attribute for the time at which it was run.

Typically, when tools are bult on top of Unix that depend upon attributes and/or relationships,
then ad hoc encoding means are used. These means range from special purpose file encodings
such as the s-fies of SCCS, through special purpose database systems such as that used in
Gandal [Gandalf 85, to general purpose database system such as that used In DSEE. Not only
Is considlerable effort wasted in building tools which each must do their own attribute and relation-

suhip upport, but even greater problems occur when tools that use different ad hoc schemes must %
.5'
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be Integrated. Consider, for example, two systems, each of which uses its own special ad hoc
scheme and where the Information used partially overlaps so that redundant information must be
synchronized between the two different schemes. The net result is that Integration is very dif-
ficult, If not Impossible.

3.5 Synchronization

When two or more users are working on the same system and therefore the same set of files,
some means of synchronizing that use Is needed. When two people are editing the same source
file without synchronization, the changes made by one may overwrite the changes made be the
other without either being aware of the problem. In the absence of automated support, users
frequently do such synchronization by manual conventions. For example, a specific set of files
are agreed to be "controlled" by some specified user who may change any of the files while other
users may read but not modify the files. The weaknesses of this approach are that It is time
consuming, error-prone, and often overly restrictive in limiting modifications. Under Unix, the
SCCS tool provides support for synchronization at the level of each source file. SCCS has two
basic operations for synchronization: get a file for editing from the s-file; and mre the edited
file back Into the s-file. Only one user may have a given s-file in the editing state, between a get
and a mrge. This Is overly restrictive because multiple edits could be proceeding safely on
independently forked alternatives. The RCS tool solves this problem by permitting one edit to be
occurring on each alternative fork. Both SCCS and RCS require explicit extra action by the user
to get and ,--ge a file when editing it. This is often enough of a burden to discourage users
from using either SCCS or RCS. The DSEE system provides the synchronization in an integrated
fashion that Is less of a burden for the user and that is harder to subvert.

Another problem with SCCS and RCS is that the default mode of operation for get is to extract
the most recent version on the main version line. At first this seems like a desirable feature, since
most of the work on a system Is with the most recent version. Problems can occur, however,
when multiple people are producing new versions of the primitive files of a system. When a user
changes some primitive files and then does a build based on most recent versions of all primitive
files, the resulting system will Incorporate not only the users changes but also possibly arbitrary
other changes made by other users to other primitive files. The net result Is that the behavior of a
most recently built system will often change over time In subtle ways that are not under the users
control. Normally, under Unix no derivation graph is recorded; thus it is difficult, if not impossible,
to figure out which set of primitive files have changed since the previous system build. Time
stamps are one clie to what has changed, but due to problems discussed earlier, they are not
always reliable. Recall that primitive files Include not only source files that belong to the system
under development but also libraries and tools that are part of Unix. Normally, Unix libraries and
tools are not version controlled; nevertheless, they are changed during periodic operating system
releases and by Unix system software maintainers at arbitrary times to fix perceived bugs".
These changes cause not only unpredictable behavioral changes In the current system builds, but
can also destroy the ability to re-create previous system versions.

10
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A high quality programming environment must support synchronization that is simple for users,
place no unnecessary restrictions on simultaneous access, support a version control system for
both user and system files, record the full derivation graph, allow the user to control explicitly
which versions of primitive files to use, and support Inquiry so that users can determine easily
which primitive files of a system have been changed. A persistent object base should provide the
basic support layer on which such environments can be bult.

4 Weaknesses of Database Systems

This section considers five areas where database systems are inadequate for persistent object
bases: types, decentralization, time, distribution, and performance. Relational database systems
[Codd 701 will be used as examples. Other database systems will differ in their details from

relational systems but display essentially similar weaknesses.

Engineering databases, particularly those used for CAD/CAM, share many basic requirements
with programming environments. Many of the weaknesses that have been identified in these
applications [Hallmark 84, Hartzband 85] are similar to those discussed here.

Relational database systems are now just starting to be used within programming environments
for applications including source program tree representation, dynamic execution behavior, and
version and configuration control [Ced 83, Snodgrass 84, Unton 84].

4.1 Types

Types in relational database systems are considered here from three perspectives: primitive
types, structural types, and abstract types.

Relational database systems typically have a small predefined set of primitive types for

attributes.15 This set is often quite constraining when used for programming environments. For
example, consider using a relation to represent the version graph.

VeraLon : relation
old: integer, -- old veruion number
new: integer, -- new veraion number
why:satrng -- reason for change

end

A value for this relation might be as follows.

1N debaae sys*S, Ow Wn1 domaI b used W W a Wet of kmh br ome atifbut. The Ism p is used

here nawed of domain to emasize enlogies wUM te type mechnism of prmmhn anu"ages.



Version

old new why

1 2 "Added a new feature that permits inverted input"

2 3 "lLzed the bug introduced in v 2"

Here the why field Is a string of arbitrary length. The only string type provided by many relational
systems Is a fixed length string. The effect of varying length strings can be achieved, but only by
subverting the system.

VersionI : relation
old:integer, -- old version nviber
new: integer, -- new version aver
count : integer, -- string indez
why:string(20) -- reason for change

end

Versionli

old new count why

1 2 1 "Added a new feature "

1 2 2 "that permits inverte"

1 2 3 "d input

2 3 1 "Fixed the bug iatrod"

2 3 2 nued in v 2 j

Not only Is the structure of the data obscured but both space to store the data and time to access
t are degraded. This kind of subversion only gets worse when trying to represent more complex
programming environment data such as program source and relocatable, documentation, and
graphics. Although all of these could be built up from the primitive types of a relational database
system, the effort Is large and the representation would be neither natural nor efficient.

Structurally, a relational database consists of a set of named relations. Consider, for example a
database with two relations.

12



Version : relation
old:integer, -- old version number
new: integer, -- new version number
why:string -- reason for change

end

Source : relation
version: integer, -- version number
day: integer, 0- day created
month: integer, -- month created
year: integer -- year created

end

All of the relationshlps between relations are expressed Implicitly. Typically, two relations are
related by using the same type for some attribute In each so that they can be joined. For ex-
ample, Version.old could be joined to Source .version. It Is not the case, however, that I
two relations have attributes with the same types that It always makes sense to join them. For
example, joining Version.old to Source.month Is not a sensible operation. One way to
introduce more structure is by stronger typing such as that provided by the Modula-2 type decla-
ration [Wirth 851.

type version type - integer;
type daytype - integer;
type month type integer;
type year type - integer;

Version : relation
old:versLon type, -- old version number
new:verLon type, -- new version number
why:strLng -- reason for change

end

Source : relation
version:version type, -- version number
day:day type, -- day created
month :month type, -- month created
year:ysar type -- year created

end

Another structural approach Is to use graphical entity-relationship diagrams [Chen 76].

13



old

Extended relational models are another way of Introducing more structure. One such system is
RMIT [Codd 79]. In RMIT, system generated surrogate keys are attached to every tuple of every
relation so that no two are ever Identical.

Source : relation
version: integer, -- version number
day: integer, -- day created
month: integer, -- month created
year: integer -- year created

end

Vera ion : relation
old:keyCSouce,-- old version
new: key CSource , -- new version
why:string -- reason for change

end

14



sourooe

key version day mouth year

1003 1 10 S Is

#004 2 20 10 35

#005 3 4 3 86

key old now why

0001 0003 0004 "added a new feature ... "

#002 1004 #005 "FJXed the bug ... "

The key attrbute Is automatically supplied and initialized by the system. Since joins now are
based on unique surrogate keys, structural relationships are specified fully. Surrogate keys are
closely related to the unique object identifiers discussed earlier and to the typed pointers of
Modula-2.

If surrogate keys are placed not only on tuples but on entire relations, then relations can be used
to relate other relations. For example, a directory tree like that of a file system can be
represented. First, a relation type for directories is Introduced.

Type Directory - relation
nme: string,
file: key

end

As an example, the following directory tree is used.
/Qnevelopment/v/docuentation
/Q.pevelopment/vl/pogra
/qNevelopment/v2/documntation
IQ.DevelopmentIV2/progra

That tree Is represented by the following Instances of the Directory type.

15
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0001:DiJrctory : tory

key name file key name file

-O0 - Im' mm-
0002 Q e pment" 9003a 9004 Val* 0006

8005 1V20 9009

6:Dretory009 :D ctory

key name. file key name file

0007 "documentation" 0.12 #010 "documentation" 9014

objt00s "program" s0u3 #ato tprogram-r s0c

The lack of abstract data types [Shaw 84 in emltional database systems is perhaps the most
sogficant type weakness. A data In a relational database exists at h tructural level. There is
no way to define a nw abstract type In terms of Its abstract properties and then define its
Implemnentation n terms of existing types. Reconsidering an earler examle, varying length

strings could be defined as a n sw abstract type that used at varible number of fixed length
strings as Its representation. This kind of abstraction becomes even more Irnprtant for complex

objects such as those that represent graphic Images.

Abstract data types gain much of their power from considering not just data In Isolation, bt data
together with the set of operations. In relational database systems, the data speclfcation written
n some schema language is teparted from the operetio as expressed in obe query In-

Sguage. Not only are the specifications physically separate, but often they a cressed in an
ncornptibe language.

Another aspect of abstract data types is that the Impslementtion can be changed without Impact-
Ing the users of the specification. Database systems normally provide users with a liMoed level of
control over the way n which the data Is represented. For example, marry database systems
allow users lo specify those pieces where redundant Inverted ndexes are to be creted. When

the user needs a representation that is not suppoulted by the system, the only altemative Is to
modify the source code of the database system Itsel. Even in those rare cases where source
code Is avallable, the oomplexity of most database systems makes this a fonmidable task. A
solution Is to put more of the control for representations In the hands of the user via an abstract
type mechanism.

A persistent object base system should provide a rich set of prmitve types, enable expression of
rich structural relationships such as those of the extended relational models, and provide a full
abstract data type mechanism. There are obvious paralels between the needed future direction
for database systems and the past evolution of type support within modem programming Ian-
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uages. Many of the same type features found in modem languages need to be brought Into
database systems; however, database systems face special problems brought about by the per-
sistence of data that were not faced by the designers of programming languages.

4.2 Decentrallzation

Database systems typically have a single centralized schema that Is maintained by a database
ad ror, DBA. For progamkg environments, It must be possible to deline and control
data locally. Ths need Is demonstrated below by several exafples.

As an Initial example, consider the set of documentation files in a system Including help files, user
manuals, Iaplementation descrions, and even the source fies of systems. These represent
online versions of Information that each user would previously have had In hardcopy. One advan-
tage of hardcopy Is tha t Is easy for each user to write in personal comments. The same
approach could be used on** by leng each user mke a copy of the document and edit in
personal convments, bu it would be ber to have a single copy of the document and let each
user be able to have a separate "ovea that contains personal comments. This kind of aby Is
becomk available though a class of environments called hypeext systems [Yankelovlch 85].
Consider the following slimplied relation types.

type Domet - relaton
line umber: integer,

end;

tp Caamets - relaton
doument key CDoanmet],
line nimer: integer,
oeinnt: trivg

end;

Considerable progress toward decentralization Is already knict in the use of type definitions and
surrogate keys. Type definitions permit multiple Instances. Surrogate keys enable an object and

Is attributes to be stored separately. This separation is Important not only for local control but
also because it permits data, such as an instance of Coents, to be added to a preexisting data
structure, such as an Instance of Document, without modfying either the type definition or con-
tents of that preexisting data structure. Not only must the database permit the rgt kind of
definitions, ft also must permit the needed operations. As basic operations, each user must be
able to create locally an Instance of Cmentax and to control the use of that instance. As a more
general operation, users should be able to define their own relation types for their own local use.
In many database systems, these ablilei are centralized with the DBA. Makcing a user go
through a DBA for these kinds of operations Is not only bothersome but also logically
unwecessary. 16

A oflset In io f slyum eve whe users mo om go foug a osudamd sym ondi dM 10
hw umi Nue aed or no~ gt should be un user tnUol.
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As a second example, consider what happens when a new tool Is added to a programming
environment. This tool may need the ability to create and access new attributes and relationships
of existing objects. The need for local definition, Insantiation, and control are similar to those of
the previous example. For tools, decentralization also can be an aid to Integration. Since each
tool can manage locally the attributes and relationships for that tool, independent tools will not
place conflicting constraints on centralized data. Conflicts can be representational, such as mul-
tipe tools wanting to use word 23 of some control block, or naming, such as mulliple tools want-
kIg to use the attribute name Neat. Particularly severe conflicts can arise when two versions of a
single tool are being supported simultaneously. For example, both versions might have a moxt
attribute, but give t slightly different semantics. By giving each version Its own Instance of the
ext attribute, multiple versions can coexist without interference. 17

As a final example, consider Integrating two previously Independent databases. Such integration
could occur when two isolated programming environment systems are connected via a network
and a transparent network file system is Installed. When centralized schema are used, integra-
tion wil require merging these two schema into a single new schema. Conflicts are virtually
certain to occur, forcing either massive recoding or a less transparent Integration In which the two
Independent schema continue to exist.

For a persistent object base, decentralization of definition, Instantation, and control is essential.
This Implies that there will not be a database administrator doing all data definition. Another
Implcation is that traditional kinds of normalization that are based on a single centralized schema
cannot be done. Since normalization is a method of removing redundancy and since controlled
redundancy can be used to Improve the engineering of software systems, full normalization may
not only be limited but also undesirable.

4.3 Time

The basic relational data model views the database as having values that vary over time. Every
attribute is considered to be variable and only ts current value is available. As was previously
discussed, programming environments must provide a history mechanism to record source ver-
sions and to support re-creation.

In many simple database systems that are used to support programming environment tools, the
only way to preserve history is by making a complete copy of the entire database. In more
powerful database systems, transaction journals are used to preserve history. A similar capability
Is provided In file systems by periodic backup of al the files on a system. All of these approaches
have a common weakness: To go back In time, It is necessary to manually substitute a previous
version of the data for the current version. This substitution can be ether physical or logical. In a

'?Local albub IMnms of ourse do not solve al in*~giabon sms. Mechnlms. such as tse in fGadan 61.
a needod for inigrant Mob Ot have logically eblad athibuWs w1er setng to aibtn ofne wo shoud modfy
the vaie of srbius of her 0 ols.
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physical substitution, the current version is copied to a safe place and then the old version Is

brought back in the place of the new version. For logical substitution, the new version Is left In
place, but operations are logically changed to operate on the reconstituted old version.

For a persistent object base, the ability to record previous states and to change back easily and
transpaently to an arbitrary previous state is essential. To capture this ability cleanly and safely
requires more than just the addition of attributes that can take on time values. A persistent object
base must Include time as an Integral part of Its underlying formal semantic model [Clifford 83].

Work on temporal database systems [Snodgrass 66] shows that time can be modeled with two
dimensions whose axes are transaction time and real time. The transaction time axis measures
the actual state of a system over time. By backing up along the transaction time axis to some
previous time, the system state is logically returned to what it was at that previous time. By
backing up along the real time axis, the system state is logically returned to the state of reality at
that previous time (as determineO by our best current knowledge). Transaction and real times will
differ when either there Is delay between the time at which an event occurs and the time at which
It is first entered Into the database or when some event Is Incorrectly entered and later corrected.
Programming environments are unlike conventional database applications because the reality
that Is being modeled is data within the database itself. This Implies that for programming en-
vironments transaction time Is identical to real time. Suppose, however, that the concept of exact
modeling of reality Is replaced by the concept of exactly correct program behavior. Now forward
progress of some program under development along the transaction axis represents Increased

(or modified) functionality, while forward progress along the correctness axis represents an in-
crease in the number of bugs fixed.

4.4 Distribution

Most currently available database systems require that all data be kept within a single machine.
Future programming environments will be based on multiple machines connected via many kinds

of networks. Although considerable work Is now being done on distributed database systems,
current systems are still rather limited [Cer 84]. Two aspects of distribution are considered: how
data Is distributed among multiple machines and how multiple users on different machines can
share the same data.

The goal of data distribution is to place data physically so that t Is available easily and quickly to

Is users while satisfying the hardware size constraints. The simplest way to distribute a relational

database Is to place different relation Instances on different machines. The placement can be

static, determined when the Instance is created, or dynamic, changeable at any time. Indepen-

dently, the placement can be manual, under the control of the user, or automatic, under the

control of the system."

A more complex distribution would place different parts of the same relation on different

machines. For example, consider the version graph relation. Accesses to that relation will tend

to be to tuples for recent versions. Older tuples can be placed on remote, slower, andtor larger
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physical devices of the system.18

When two people are using the same data, then In general no one place Is best for both. A
solution is to permit separate copies of the data to exist at locations that are good for each user.
When the users are reading the data and neither Is modifying it, then permitting multiple copies is
easier.. A special case of read-only data Is Immutable objects. Many network file systems are
now providing caching, a dynamic automatic mechanism for transparently creating and managing
multiple copies of data [Schroeder 85, Morris 86].

Not all data In a programming environment can be Immutable. At least some data must be
mutable for progress to be made. A simple mechanism for dealing with mutable data In the
presence of multiple users Is to use a central server. A server Is a specific machine that controls
write access to data.1s The server ensures that only one user Is writing the same data at the
same time. Before a user can modify data, a lock Is set on the server so that other users cannot
modify that same data.

Servers limit effective distribution. The problem can be reduced by either minimizing the fre-
quency with which a user Interacts with the server or by modifying data In ways that do not
require the use of a central server.

To understand how to minimize server interaction, it is Instructive to consider how multiple users
working on the same system Interact when using a programming environment that provides no
synchronization for data modification. In this case, the users often Invent manual methods for
synchronization. Other than failures that occur when someone forgets the state of the manually
set locks, such methods work just fine. An Important distinguishing characteristic of these manual
methods is the frequency of the synchronization operations. While common automated systems
often operate with a frequency of many synchronization operations per second [Ousterhout 851,
manual methods may have a frequency of only a few operations per day. By Implementing
analogues of these manual methods, server Interaction rates can be lowered. As an example,
consider the directory tree of a network file system. Every time a new file name is created, a
synchronization operation Is needed. Most users on Unix systems are creating and destroying
files at a high rate. To lower the rate Involves completely rethinking the role of global name
spaces in programming environments.2°

As an example of how data can be modified without involving a server, consider the version
graph relation.

"This Indda migraing old ps io mavnec t We.

l*ke ee, hOwn an be ntils sers as long as each data bm Is handed by xay one sewer.

N msin Unix swn two imipendent pmpos, onecini ums to #Isr detifon, amd ommicng infoson I
bItee users. U.s can be oonnscted o defniton by using unkue kbn#brs nsed of nems. Each unique Idnler
may ON have a name, but Sut name is used for local dsplay purposes only; he connco is mbde vie O unique
indfer. A global name In is needed only in hose relsaely less frequent cases whee a ineomaon Is passed between
users. A shingle global nane may be oommunicaled for an on*re sysim tw inurmny conbins Iounds of loa uniqueidsnwlers.
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Vezson : zelation
old:key[8ourceJ,-- old version
nev:key[source],-- now version
why:strLng -- reaon for change

end

Suppose that two users each want to create a successor of some existing version. Each will
create a new source object and add a new tuple for it to the version relation. There Is no basic
conflict between these additions. Since the tuples of a relation are an unordered set, the order of
the additions will not affect the final value of the relation.

Since a network Imposes finite delays21 , time within a network Is relativistic [Lamport 78). In
relativistic time, there Is no system-wide absolute clock. Each machine within the network is
assumed to have its own clock that progresses at its own rate. In such a system, there Is no total
ordering of events. Consider again the two users, A and a, each of which has a machine within
the same network, both trying to create a successor of the same existing version. To A It may
seem as though the new A tuple appears before the new a tuple, while to 3 the order appears to
be the 3 tuple followed by the A tuple.22

Now suppose that each new version Is to be given the next new Integer version number. This
can only be done by having a single server that assigns those numbers. Many version manage-
ment systems have a similar problem. When several alternative versions are present, one of
them Is designated as the primary version. A central server is needed to control which new
version Is to be the primary version.

For a persistent object base, automatic dynamic placement and caching of relations and parts of
relations is needed. Various methods must be used to avoid high Interaction rates with central
servers.

4.5 Performance

The performance of database systems is tuned to access patterns that may be quite different
from those expected In programming environments. Performance is considered here In terms of
what Is accessed and who Is accessing t. A thorough understanding of the performance issues
of using databases for programming environments can occur only after many more experiments
are carried out and much more analysis is done. Based on what Is still very limited experience,
this discussion speculates on areas where performance problems seem most likely to occur.

Relational database systems typically are tuned to emphasize the performance of operations that
deal with entire relations, such as join and projection. In a programming environment, operations

71 hes deh s on be *ftW "mg when loi of deW Is Wanemlud over a dup phwo " or wtn sm Ift In OwfelSok Isb euen.
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that deal only with a single tuple from each of many relations may be more frequent. In program-
ming environments, access patterns that traverse trees or directed graphs are common. Such
traversals must extract a single tuple, from the relation that represents the tree or graph, at each
step. Relational database systems typically assume that all tuples of a relation are equally likely
to be accessed. In the version relation, for example, tuples for more recent versions are more
likely to be accessed. Graph transitive closure operations are common in programming environ-
ments. For example, a query might be to determine all versions that are direct or indirect
predecessors of some given version. Database systems are not normally tuned to make tran-
sitive closure efficient. Furthermore, relationally complete query languages cannot in general
even express transitive closure.

Many database systems are designed mainly to Interact with people. In a programming environ-
ment, most of the use of the data will be by programs. Most database query languages are
Interpreted, not compiled. While users may accept small delays due to interpretation, the heavy
use of data accessing programs may produce unacceptable performance degradation in pro-
gramming environments. Of special performance significance Is the use of surrogate keys.
These keys serve exactly the same role as pointers do in most programs: They are used to build
linked list structures such as trees and graphs. The efficiency of the pointer dereference opera-
tion Is known to be a major factor in determining the execution speed of most system programs.
Unless surrogate keys can be Implemented with an efficiency approaching pointers, then rela-
tional databases may prove to be an unacceptable basis for programming environments.23

5 Conclusions

This paper has examined from several perspectives the weaknesses of file systems and
database systems as a basis for persistent object bases of programming environments. Neither
current file systems nor current data base systems are adequate to support a first class persistent
object base. In many areas, however, current research and development is progressing toward
systems that correct at least some of the weaknesses.

This paper provides designers and evaluators of persistent object bases with a checklist of issues
to be considered and a list of problem areas where further work is needed. However, the real
work of building a persistent object base may be less concerned with finding novel solutions to
specific problems and more concerned with effectively Integrating current technology.
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